Reg. No. : \qquad
Name : \qquad

I Semester B.A./B.Sc./B.Com./B.B.A./B.B.A.T.T.M./B.B.M./B.C.A./B.S.W./ B.A. Afsal-UI-Ulama Degree (CCSS - Regular/Supple./Improvement) Examination, November 2013 COMPLEMENTARY COURSE IN MATHEMATICS 1 C01 MAT : Algebra and Geometry

Time: 3 Hours

1. Fill in the blanks :
a) \qquad is a group under multiplication but is not a group under addition.
b) \qquad is an example of a 1-demensional vector space.
c) \qquad is an example of a finite field.
d) \qquad is an independent subset of \mathbb{R}^{2}.

Answer any six from the following :
(Weightage 1 each)
2. Find the span of $\{(1,0),(0,1)\}$ in \mathbb{R}^{2}.
3. Prove or disprove that $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}, 0\right)$ is a linear transformation.
4. Check whether the set of all $f \in \mathcal{C}[0,1]$ such that $f(0)=f(1)$ is a subspace of と $[0,1]$
5. If $\left(v_{1}, v_{2}\right)$ is a linearly independent set in V . Then prove that $\mathrm{v}_{1} \neq 0 \neq \mathrm{v}_{2}$.
6. If $\mathrm{T}: \mathrm{U} \rightarrow \mathrm{V}$ be a linear map. Then prove that
$T\left(\alpha_{1} u_{1}+\ldots+\alpha_{n} u_{n}\right)=\alpha_{1} T\left(u_{1}\right)+\ldots+\alpha_{n} T\left(u_{n}\right)$ where $u_{1}, u_{2}, \ldots u_{n} \in U$ and $\alpha_{1}, \alpha_{2} \ldots \alpha_{n}$ are scalers.
7. Explain the linear transformation "differential operator".
8. Define eigen vector of a matrix.
9. Write equations relating polar and cartesian co-ordinates.
10. Explain the representation of a point in spherical co-ordinates.
11. Find an equation for the circular cylinder $4 x^{2}+4 y^{2}=9$ in cylindrical coordinates.
(Weightage $6 \times 1=6$)
Answer any seven from the following :
(Weightage 2 each)
12. If S is a nonempty subset of a vector space V , then prove that $[\mathrm{S}]$ is the smallest subspace of V containing S .
13. If U and W are subspaces of a vector space V, prove that $U U W$ is a subspace of V iff UCW or WCU.
14. If a set is linearly independent then prove that any subset of it is also linearly independent. What about the superset of a linearly independent set.
15. Find the linear transformation $T: V_{2} \rightarrow V_{2}$ such that $T(1,2)=(3,0)$ and $T(2,1)=(1,2)$.
16. Find the rank of the matrix $\left[\begin{array}{ccc}4 & 1 & 2 \\ -3 & 2 & 4 \\ 8 & -1 & -2\end{array}\right]$.
17. Show that the interchange of a pair of rows does not change the rank.
18. Verify Cayley Hamilton Theorem for the matrix $\left[\begin{array}{ccc}1 & 2 & -1 \\ 0 & 1 & -1 \\ 3 & -1 & 1\end{array}\right]$.
19. Investigate the values of λ and μ so that the equations
$2 x+3 y+5 z=9,7 x+3 y-2 z=8,2 x+3 y+\lambda z=\mu$ have a unique solution.
20. Solve the system of equations.
$x+y+z=9,2 x+5 y+7 z=52,2 x+y-z=0$.
21. Show that the equations $x_{1}+3 x_{2}-x_{3}=1,4 x_{1}+15 x_{2}-5 x_{3}=7$, $3 x_{1}+3 x_{2}-x_{3}=0$ are consistent and then solve.
22. Show that A and its transpose has the same eigen values.
(Answer any three from the following :
(Weightage 3 each) :
23. Find the eigen values and the corresponding eigen vectors of the matrix.
$\left[\begin{array}{ccc}0 & 1 & 2 \\ 2 & 3 & 0 \\ 1 & 1 & -1\end{array}\right]$
24. Verify Cayley-Hamilton theorem for the matrix $A=\left[\begin{array}{ccc}4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3\end{array}\right]$ and evaluate A^{-1}.
25. 1) Convert the polar equation $r \cos \theta=2$ into cartesian equations.
2) Convert the cartesian equation $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ into polar equations.
26. Translate the equation $x^{2}+y^{2}+(z-1)^{2}=1, z \leq 1$ into cylindrical and spherical system.

