

Reg. No.	•••	٠	•	• •						 •		•••	••			 0000
Name :	1070	0.0		100	oje:	- 20	200	2000	d31	100	33		es		0.0	

II Semester M.Sc. Degree (C.B.S.S.-Supplementary) Examination, April 2025 (2021 and 2022 Admissions) MATHEMATICS

MAT 2C08: Advanced Topology

Time: 3 Hours

Max. Marks: 80

PART - A

Answer any four questions from this Part. Each question carries 4 marks. (4×4=16)

- 1. Prove that every totally bounded metric space is bounded.
- 2. Prove that every closed subset of a compact space is compact.
- 3. Prove that the Moor plane is not normal.
- 4. Let $X = \{1, 2, 3\}$. Find all topologies τ on X such that (X, τ) is regular.
- 5. Explain Hilbert cube.
- 6. Let (X, τ) be a topological space, let $x_0 \in X$, and let $[\alpha] \in \pi_1(X, x_0)$. Then prove that there exists $[\overline{\alpha}] \in [\alpha] \in \pi_1(X, x_0)$ such that $[\alpha] \circ [\overline{\alpha}] = [\overline{\alpha}] \circ [\alpha] = [e]$.

PART - B

Answer any four questions from this part without omitting any Unit. Each question carries 16 marks. (4×16=64)

UNIT - I

- Let (X, d) be a metric space. Then prove that the following statements are equivalent.
 - a) (X, d) is compact.
 - b) (X, d) is sequentially compact.
 - c) (X, d) is countably compact.
 - d) (X, d) has Bolzano-Weierstrass property.

P.T.O.

K25P 2018

- a) Prove that a topological space (X, τ) is compact if and only if every family
 of closed subsets of X with the finite intersection property has a nonempty
 intersection.
 - b) Let (X, τ) be a topological space and let B be a basis for τ. Then prove that (X, τ) is compact if and only if every cover of X by members of B has a finite subcover.
 - c) Let (X, τ) and (Y, U) be compact spaces. Then prove that $X \times Y$ is compact.
- a) Prove that every closed subspace of locally compact Hausdorff space is locally compact.
 - With suitable example, show that the continuous image of a locally compact space need not be locally compact.
 - c) With detailed explanation, give an example of a topological space which has the Bolzano-Weierstrass property but it is not locally compact.

- 10. a) Let (X, τ) be a topological space, let (Y, U) be a Hausdorff space, and let f: X → Y be continuous. Then prove that {(x₁, x₂) ∈ X × X : f (x₁) = (x₂)} is a closed subset of X × X.
 - b) For each i = 0, 1, 2 prove that the product of T_i space is a T_i space.
- 11. a) Let {(Xα, τα) : α ∈ Λ} be a family of topological spaces, and let X = ∏_{α∈Λ} Xα. Then prove that (X, τ) is regular if and only if (Xα, τα) is regular for each α ∈ Λ.
 - b) Prove that a T₁ space (X, τ) is regular if and only if for each member p of X and each neighbourhood U of p, there is neighbourhood V of p such that √∇⊆U.
 - c) Prove that a T_1 space (X, τ) is regular if and only if for each $p \in X$ and each closed set C such that $p \notin C$, there exists an open sets U and V such that $C \subseteq U$, $p \in V$, and $\overline{U} \cap \overline{V} = \phi$.
- 12. a) Prove that every uncountable subset of a Lindelof space has a limit point.
 - b) Prove that every second countable regular space is normal.

UNIT - IS

- State and prove Urysohn's Lemma.
- 14. Prove that a T₁ space (X, τ) is normal iff whenever A is closed subset of X and $f:A \rightarrow [-1,\ 1]$ is a continuous function, then there is a continuous function $F: X \rightarrow [-1, 1]$ such that $F|_A = f$.
- 15. a) Let (X, d) be a compact metric space, let (Y, U) be a Hausdorff space, and let $f: X \to Y$ be a continuous function that maps X onto Y. Then prove that
- a, let x₀ ∈ X, a x ∈ I . Then prove b) Let (X, τ) be a topological space, let $x_0 \in X$, and let $e: I \to X$ be the path defined by $e(x) = x_0$ for each $x \in I$. Then prove that $[\alpha] \circ [e] = [e] \circ [\alpha] = [\alpha]$