

	K25P 2016
Reg. No. :	
Name :	
(2021 and 20 MATH	upplementary) Examination, April 2025 22 Admissions) EMATICS ced Abstract Algebra
Time: 3 Hours	Max. Marks: 80
PAI	RT - AC
Answer any four questions from this F	Part. Each question carries 4 marks.
1. Define UFD and give an example of	fa UFD.
2. Prove that every Euclidean domain	is a PID.
3. Find the degree and a basis for $\mathbb{Q}($	$\sqrt{2}$, $\sqrt{3}$, $\sqrt{18}$) over \mathbb{Q} .
 Define primitive nth root of unity. F GF(19). 	ind the number of 18 th roots of unity in
5. Find the degree over $\mathbb Q$ of the splitting	ing field over \mathbb{Q} of $(x^2 - 2)$ $(x^2 - 3)$ in $\mathbb{Q}[x]$.
6. If E is a finite extension of F, show	that {E : F} divides [E : F]. (4×4=16)
PAF	RT – B
Answer any four questions from this question carries 16 marks.	Part without omitting any Unit. Each
, Ur	nit – I
a) If D is a UFD, prove that product again primitive.	et of two primitive polynomials in D[x] is
b) If D is a UFD, prove that D[x] is a	10 UFD.
8. a) State and prove Euclidean Algor	ithm. 12

b) Compute the gcd of 22471 and 3266.

4

K25P 2016

9.	a) Let F be a field and let $f(x)$ be a non-constant polynomial in $F[x]$. Prove that there exist an extension field E of F and an $\alpha \in E$ such that $f(\alpha) = 0$.	11
	b) Prove that there exists a field of 27 elements.	5
	Unit – II	
10.	Prove that every field F has an algebraic closure F.	
11.	a) State and prove Fundamental theorem of algebra.	5
	b) Prove that $\mathbb{Q}(\sqrt{3} + \sqrt{7}) = \mathbb{Q}(\sqrt{3}, \sqrt{7})$.	7
	c) Let E be a finite extension of degree n over a finite field F. If F has q elements, prove that E has q ⁿ elements.	4
12.	a) Prove that doubling the cube is impossible.	6
	b) Show that the set of all automorphisms of a field E is a group under function	,
	composition. c) Let F be a finite field of characteristic p. Prove that $\sigma_n : F \to F$ defined by	4
	$\sigma_p(a) = a^p$ for $a \in F$ is an automorphism and $F_{(\sigma_p)} = \mathbb{Z}_p$.	6
	$\sigma_{p}(\alpha) = \alpha^{-1} \text{ for } \alpha \in \Gamma$ is an automorphism and $\Gamma_{(\sigma_{p})} = \mathbb{Z}_{p}$. Unit \Rightarrow III	
13.	State and prove isomorphism extension theorem.	
14.	a) If $E \le \overline{F}$ is a splitting field over F, prove that every irreducible polynomial in F[x] having zero in E splits in E.	5
	b) If E is a finite extension of F, prove that E is separable over F if and only if each α in E is separable over F.	6
0	c) What is the order of $G(\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3})/\mathbb{Q})$?	5
15.	a) Let E be a finite field of order p ⁿ .	
	i) Show that the Frobenius automorphism, σ _p has order n.	4
	ii) Deduce from (i) that $G(E/F)$ is cyclic of order n with generator σ_p .	3
	b) Let K be a finite normal extension of a field F, with Galois group $G(K/F)$. For a field E, where $F \le E \le K$, let $\lambda(E)$ be the subgroup of $G(K/F)$ leaving	
	E fixed. Prove that λ is a one to one map of the set of all such intermediate fields E on to the set of all subgroups of G(K/F).	9
	(4×16=	64)