Reg. No. : \qquad
Name : \qquad

IV Semester B.C.A. Degree (CBCSS - OBE - Regular/Supplementary/ Improvement) Examination, April 2023
 (2019 Admission Onwards)
 GENERAL AWARENESS COURSE
 4A14BCA : Discrete Mathematical Structures

Time : 3 Hours
Max. Marks : 40

PABT - A

(Short Answer)
Answer all questions.

1. Define tautology.
2. Define equivalence relation.
3. How many relations are there on a set with n elements ?
4. Define Boolean variable.
5. Find the value of x if $x+x=0$.
6. Define Euler path.

PART - B
(Short Essay)
Answer any 6 questions.
$(6 \times 2=12)$
7. Define 'directed multigraphs'.
8. What is a 'decision tree'?
9. What is 'OR gate'?
10. Determine whether the following statements are true or false:
a) $0 \in \phi$
b) $\phi \subset\{0\}$.
11. Find $A-B$ and $B-A$ if $A=\{1,2,3,4,5\}$ and $B=\{0,3,6\}$.
12. Write and converse and inverse of $p \rightarrow q$.
13. What do you mean by fallacy?
14. Define Antisymmetric Relation.

PART-C
(Essay)
Answer any 4 questions.
$(4 \times 3=12)$
15. Let R be a reflexive and transitive relation. Prove that $R^{n}=R$ for all positive integers n .
16. Explain 'complete graphs'. Draw complete graph with number of vertices 5 and 6 .
17. Prove that an undirected graph has an even number of vertices of odd degree.
18. What is the value of the postfix expression ?
$723 *-4 \uparrow 93 /+?$
19. Define Cartesian product of two sets. Show that $A \times B \neq B \times A$ with the help of a suitable example.
20. Show that $\neg(\mathrm{p} \vee(\neg \mathrm{p} \wedge \mathrm{q})$ and $\neg \mathrm{p} \wedge \neg \mathrm{q}$ are logically equivalent by developing a series of logical equivalences.

$$
\begin{aligned}
& \text { PART - D } \\
& \text { (Long Essay) }
\end{aligned}
$$

Answer any 2 questions.
($2 \times 5=10$)
21. Let p : "Swimming at the shore is allowed".
$\mathrm{q}:$ "Sharks have been spotted near the shore"
Express each of these propositions as sentences
a) $p \wedge q$
b) $p \rightarrow \neg q$
c) $p \leftrightarrow \neg q$
d) $\neg p \rightarrow \neg q$
e) $\neg p \wedge(p \vee \neg q)$.
22. Explain Hamilton circuits with examples Show that K_{n} has a Hamilton circuits whenever $n \geq 3$.
23. Explain Depth First Search method to build a spanning tree with suitable example.
24. State and prove De Morgan's laws and distributive laws using membership table.

