

K25U 1319

Reg. No. :

Name :

Second Semester B.Sc. Degree (C.B.C.S.S. – OBE – Supplementary/ Improvement) Examination, April 2025 (2019 to 2023 Admissions) CORE COURSE IN MATHEMATICS 2B02 MAT : Integral Calculus and Logic

Time : 3 Hours

Max. Marks: 48

Unit -1

Short answer type. Answer any 4 questions. Each question carries 1 mark. (4×1=4)

- 1. Define hyperbolic sine of x.
- 2. Write the equation of the circle of radius |a| centered at O in polar co-ordinates.
- 3. Find the Cartesian equivalent of the Polar equation $r^2 \cos \theta \sin \theta = 4$.
- 4. Define a tautology.
- 5. Define the conjunction of p and q.

Unit - Il

Short essay type. Answer any 8 questions. Each question carries 2 marks.

(8×2=16)

- 6. Prove that $\sinh 2x = 2 \sinh x \cosh x$.
- 7. Evaluate $\int x \sin 2x \, dx$.
- 8. Find the Cartesian equivalent Polar equation of r $\cos \theta = 2$.
- 9. Evaluate $I = \int_{0}^{1} \int_{1}^{2} (x^2 + y^2) dx dy$.

P.T.O.

K25U 1319

- 10. Find the area enclosed between x = 5, x = 10 and y = x and y = 5 + x.
- 11. Define an integration rule of order p.
- 12. Write the composite trapezoidal rule of order 1.
- 13. What is the disjunction of the propositions p and q where p is the proposition "Today is Friday" and q is the proposition "It is raining today" ?
- 14. If m,n are natural numbers such that $m + n \ge 20$, then prove that either $m \ge 10$ or $n \ge 10$.
- 15. Examine that the following argument is valid : $p, p \rightarrow q q$.
- 16. Check whether the proposition $(\exists n \in P)$ (n + 4 < 7) is true or false. Justify.

Unit – III

Essay type. Answer any 4 questions. Each question carries 4 marks. (4×4=16)

17. Evaluate $\int 4 \cosh(3x-\ln 2) dx$.

- 18. Evaluate $I = \int \sin^3 x \cos^2 x dx$.
- 19. Find the volume of the prism whose base is the triangle in the xy-plane bounded by the x-axis and the lines y = x and x = 1 and whose top lies to the plane z = f(x,y) = 3 - x - y.
- 20. The upper half of the cardioid $r = a(1+\cos\theta)$ rotate about the polar axis. Find the volume generated.
- 21. Evaluate $\int_{0}^{1} \frac{dx}{3+2x}$, using Simpson's rule with n = 2,4. Compare with the exact solutions.
- 22. Show that the propositions $p \rightarrow q$ and $\neg p \lor q$ are logically equivalent.
- 23. Give a proof by contradiction of the theorem "if n^2 is even, then n is even".

K25U 1319

Unit – IV

-3-

Long essay type. Answer any 2 questions. Each question carries 6 marks. (2×6=12)

24. Find reduction formulae for ∫ xsinⁿ xdx.

on Bosco Any

- 25. Use cylindrical coordinates to evaluate $\int_{-3}^{3} \int_{-\sqrt{9-x^2}}^{\sqrt{9-x^2}} \int_{0}^{9-x^2-y^2} x^2 dz dy dx$.
- 26. Evaluate $\int_{0}^{1} \frac{dx}{3+2x}$, using trapezoidal rule with n = 2,4. Compare with the exact solution. Find the bound on the error. Also, find the number of sub-intervals required if the error is to be less than 5×10⁻⁴.
- 27. Determine the validity of the following argument : $p \rightarrow q, \neg q \neg p$.