

V Semester B.Sc. Degree (CBCSS – OBE – Regular/Supplementary/ Improvement) Examination, November 2025 (2019 to 2023 Admissions) CORE COURSE IN MATHEMATICS 5B06MAT : Real Analysis – I

Time: 3 Hours

Max. Marks: 48

PART - A

Answer any 4 questions from this Part. Each question carries 1 mark.

 $(4 \times 1 = 4)$

- 1. State distributive property of multiplication over addition.
- 2. Define the absolute value of a real number a.
- 3. Give an example of a bounded monotone sequence.
- 4. Write the sequence of partial sums of the series $\sum \frac{1}{n}$.
- 5. Give an example of a function discontinuous only at x = -3.

PART - B

Answer any 8 questions from this Part. Each question carries 2 marks. (8×2=16)

- 6. If $a \in \mathbb{R}$ is such that $0 \le a < \epsilon$ for every $\epsilon > 0$, show that a = 0.
- 7. Express $\frac{1}{7}$ and $\frac{3}{7}$ as periodic decimals.
- 8. If a > b and b > c, use order properties to show that a > c.

K25U 2350

-2-

- 9. Show that a sequence in \mathbb{R} can have at most one limit.
- 10. Give a formula for the nth term of the sequences $x_n = (5, 7, 9, 11,)$ and $y_n = (6, 8, 10, 12,)$.
- 11. Find $\lim_{n\to\infty} \left(\frac{3n+1}{2n+3}\right)$.
- 12. Show that the series $\sum_{n=1}^{\infty} \frac{1}{n^2 + n}$ converges.
- 13. Show that the series $\sum \cos n$ is divergent.
- 14. Show that an absolutely convergent series in ${\mathbb R}$ is convergent.
- 15. Given that f, g: A $\to \mathbb{R}$ are continuous on a set A $\subseteq \mathbb{R}$. Show that fg is continuous on A.
- 16. Given that $f(x) = \frac{x^2 x 6}{x 3}$ for $x \ne 3$. Define f at x = 3 in such a way that f is continuous at x = 3.

PART - C

Answer any 4 questions from this Part. Each question carries 4 marks. (4x4=16)

- State and prove Archimedean Property of the Set N of natural numbers.
- 18. Show that every contractive sequence is convergent.
- 19. Given that (x_n) and (y_n) are sequences of real numbers such that $(x_n) \to x$ and $(y_n) \to y$, where $x, y \in \mathbb{R}$. Show that $(x_n + y_n) \to x + y$ and $(x_n \cdot y_n) \times y$.
- 20. Define a Cauchy sequence. Show that a Cauchy sequence is convergent.

-3-

- 21. Establish the convergence or the divergence of the series whose n^{th} term is $\frac{n!}{3.5.7....(2n+1)}.$
- 22. Given that (z_n) be a decreasing sequence of strictly positive numbers with $\lim(z_n) = 0$. Show that the alternating series $\sum (-1)^{n+1} z_n$ is convergent.
- 23. State and prove Preservation of Intervals Theorem.

PART - D

Answer any 2 questions from this Part. Each question carries 6 marks. (2x6=12)

- 24. Show that there exists a positive real number x such that $x^2 = 2$.
- 25. State and prove Monotone Subsequence Theorem.
- 26. State and prove ratio test for convergence of a series $\sum x_n$.
- 27. Given that I = [a, b] is a closed bounded interval and let f: I → ℝ is continuous on I. Show that f has an absolute maximum and an absolute minimum on I.