Reg. No. : \qquad
Name: \qquad

VI Semester B.Sc. Degree (CBCSS - OBE - Regular/Supplementary/ Improvement) Examination, April 2023
 (2019 and 2020 Admissions)
 CORE COURSE IN MATHEMATICS
 6B13 MAT : Linear Algebra

Time : 3 Hours
Max. Marks : 48

PART - A

Answer any 4 questions. Each question carries one mark.

1. Find the null space and range space of the zero transformation from R^{3} to R^{3}.
2. Write a subspace of $M_{n \times n}(F)$.
3. What is the dimension of C over R ?
4. State Sylvester's law of nullity.
5. Give an example for an infinite dimensional vector space.
PART - B

Answer any 8 questions. Each question carries two marks.
6. Let $T: R^{2} \rightarrow R^{2}$ defined by $T(x, y)=(1, y)$. Is T linear ?
7. Prove that in any vector space $\mathrm{V}, 0 \mathrm{x}=0$, for each $\mathrm{x} \in \mathrm{V}$.
8. State Dimensional theorem.
9. Let $T: R^{2} \rightarrow R^{3}$ defined by $T(x, y)=(x+7 y, 2 y)$. Write the matrix of T with respect to the standard ordered bases of R^{2} and R^{3}.
10. If -2 and 2 are eigen values of a square matrix A, then what are the eigen values of A^{\prime}, transpose of A ?
11. Let $T: F^{2} \rightarrow F^{2}$ be a linear transformation defined by $T(x, y)=(1+x, y)$. Find $N(T)$.
12. Determine whether $\{(2,-4,1),(0,3,-1),(6,0,-1)\}$ form a basis for R^{3}.
13. Define an elementary matrix.
14. Let A be a 2×2 orthogonal matrix with 3 as an Eigen value. What will be the other Eigen value of A ?
15. Give an example for a linear transformation $T . F^{2} \rightarrow F^{2}$ such that $N(T)=R(T)$.
16. State Cayley Hamilton theorem.

Answer any 4 questions. Each question carries four marks.
17. Define a vector space.
18. Prove that $P_{n}(F)$ is a vector space.
19. Prove that any intersection of subspaces of a vector space V is a subspace of V.
20. Prove that $\operatorname{rank}\left(A A^{\prime}\right)=\operatorname{rank}(A)$.
21. Find the rank of $\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 3 & 4 & 5 & 2 \\ 2 & 3 & 4 & 0\end{array}\right]$.
22. Lét W be a subspace of a finite dimensional vector space V . Then prove that W is finite dimensional and $\operatorname{dim} \mathrm{W} \leq \operatorname{dim} \mathrm{V}$. Moreover if $\operatorname{dim} \mathrm{W}=\operatorname{dim} \mathrm{V}$ then prove that $\mathrm{V}=\mathrm{W}$.
23. Let $A=\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]$. Find A^{-1} using Cayley Hamilton theorem.
PART - D

Answer any 2 questions. Each question carries six marks.
24. Reduce the matrix $A=\left[\begin{array}{rrrr}1 & 2 & 0 & -1 \\ 3 & 4 & 1 & 2 \\ -2 & 3 & 2 & 5\end{array}\right]$ into normal form and hence find the rank.
25. Solve the system of equations

$$
x+3 y-2 z=0,2 x-y+4 z=0, x-11 y+14 z=0
$$

26. Find the Eigen values and Eigen vectors of 1 ค
2 $C^{2} \left\lvert\, \frac{1}{2} \cdot 1\right.$
27. State and prove replacement theorem.
